Centers & Programs


Home Centers & Programs Mathematical Challenges Publications

Gradient Blow-Up for Dispersive and Dissipative Perturbations of the Burgers Equation
KIAS Author
Oh, Sung-Jin,Oh, Sung-Jin
We consider a class of dispersive and dissipative perturbations of the inviscid Burgers equation, which includes the fractional KdV equation of order alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, and the fractal Burgers equation of order beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, where alpha,beta is an element of[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta \in [0,1)$$\end{document}, and the Whitham equation. For all alpha,beta is an element of[0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta \in [0,1)$$\end{document}, we construct solutions whose gradient blows up at a point, and whose amplitude stays bounded, which therefore display a "shock-like" singularity. Moreover, we provide an asymptotic description of the blow-up. To the best of our knowledge, this constitutes the first proof of gradient blow-up for the fKdV equation in the range alpha is an element of[2/3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [2/3, 1)$$\end{document}, as well as the first description of explicit blow-up dynamics for the fractal Burgers equation in the range beta is an element of[2/3,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in [2/3, 1)$$\end{document}. Our construction is based on modulation theory, where the well-known smooth self-similar solutions to the inviscid Burgers equation are used as profiles. A somewhat amusing point is that the profiles that are less stable under initial data perturbations (in that the number of unstable directions is larger) are more stable under perturbations of the equation (in that higher order dispersive and/or dissipative terms are allowed) due to their slower rates of concentration. Another innovation of this article, which may be of independent interest, is the development of a streamlined weighted L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2}$$\end{document}-based approach (in lieu of the characteristic method) for establishing the sharp spatial behavior of the solution in self-similar variables, which leads to the sharp H & ouml;lder regularity of the solution up to the blow-up time.